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Abstract: Cyber-physical systems employing remote sensors and actuators and sparse commu-
nication networks are pervading the infrastructure. In this paper we consider a prototypical
problem of estimating a binary state using measurements provided by binary sensors. We
propose a new approach to estimate the states based on sensor measurements that may have
been corrupted by an attacker. The problem is formulated as a minimax problem in which a
detector attempts to maximize the probability of detection in case of the worst case attempt
by the attacker to minimize this probability. A fixed form of the detector is proposed in the
case where the sensors are of equivalent specifications, along with a method to find the optimal
detector parameters.
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1. INTRODUCTION

Cyber-Physical systems (CPS) often employ distributed
networks of embedded sensors and actuators (Lee (2008))
that interact with the physical environment, and are mon-
itored and controlled by a Supervisory Control and Data
Acquisition (SCADA) system. Distributed sensors and ac-
tuator networks are often seen in varied applications, such
as critical infrastructure monitoring, autonomous vehicle
control, healthcare, etc.

Given the ubiquity of cyber-physical systems, and the
reliance on their performance, incentives are abundant for
miscreants to attack such systems, from simple economic
reasons (reducing gas bills), and advantages over industrial
competitors (manipulating differential electricity pricing),
to political espionage and sabotage (derail national sci-
entific and military programs) and full-fledged terrorism
(cause communications breakdown, traffic disruptions).
Isolation of CPS networks and controllers from the In-
ternet can only offer a limited amount of protection, not
only because of the advent of increasingly “smart” cyber-
physical systems like Smart Grids, which require Internet
access, but also because of the increasing deployment of
sensors to remote locations where the sensors themselves,
and the communications to and from them, cannot be
adequately monitored for security.

Additionally, organized criminals, industrial spies, and
global terrorists have proved themselves adept at introduc-
ing malware into heavily secured and isolated networks by
relying on human errors. The Stuxnet worm is an example
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of digital warfare that was waged against Iran’s nuclear
program (Sanger (2012)). Stuxnet, which was chiefly used
in coordination with espionage malware was introduced
by infected USB flash drives, and further used peer-to-
peer calls to infect other computers inside private networks
(Matrosov et al. (2010)). It is evident that relying on isola-
tion of networks and components, and in general, security
with obscurity, is at best only a short-term solution.

The Stuxnet worm also brought to light serious security
susceptibilities in industrial control systems. The worm
was specially designed to reprogram industrial centrifuges
and sabotage their outputs (Markoff (2010)). This attack
resonated with a recent concern in distributed control
system security, whereby an attacker could modify the
software or environment of some of the networked sensors
and/or actuators, to launch a coordinated attack against
the system infrastructure.

A conventional method of security, is using symmetric and
asymmetric encryption and decryption to secure the com-
munications. Cryptographic keys are broken and stolen
daily, but even if they were secure, an attacker could
directly attack the physical environment of the compo-
nents, without even touching the communication network.
There are other methods of approaching CPS security,
most of which rely either on the information content of
the system (confidentiality, integrity, availability), or on
the robustness of controllers and estimation, detection and
identification algorithms. The problem with concentrating
on the information content is the lack of a system model,
which can blind the detector to a wide variety of attacks
(for example, lowering electricity bills by bypassing the
meter). On the other hand, robust controllers and algo-
rithms tend to assume random, uncoordinated failures,
which is hardly the case during an attack.

Considerable research has been devoted to constructing
estimators that are not unduly affected by outliers or
other small departures from model assumptions (Maronna
et al. (2006), Huber and Ronchetti (2011)), which can be



used to nullify the effect of outliers. However, the case
of an attack is quite different from randomly occurring
outliers, and such methods need to be reformulated for
CPS. Bad data detection has been used in power grids for
a long time (Abur and Expósito (2004)). Liu et al. (2011)
and Sandberg et al. (2010) consider how an attacker can
design and inject inputs into measurements to change state
estimation results.

In this paper, we look at the problem of secure detection
for a system with a binary state and binary sensors.
Although a sensor giving out just one bit of information
seems too weak at the first glance, it is more than just an
interesting case to look at. For systems using a multitude
of distributed sensors for detecting a binary state, it is
often superfluous to consider continuous readings from
all sensors, and in fact, might prove to be infeasible for
both the sparse and low-powered communication network,
as well as the small embedded processors. It is usual on
such a platform for the sensors to be programmed to
make a decision based on the information they have, and
only communicate this decision over the network, reducing
the communication overhead. The controller then makes a
decision based on these preliminary decisions.

A similar system has been previously studied by Agah
et al. (2004), Alpcan and Başar (2003), Fuchs and Khar-
gonekar (2011) and later by Vamvoudakis et al. (2012),
by formulating the problem as a zero-sum partial informa-
tion game in which a detector attempts to minimize the
probability of error and an attacker attempts to maximize
this probability. The optimal policy recommended by the
authors in the latter work is a mixed strategy, where the
detector chooses between two rules, based on the perceived
probability of attack. This policy is dependent on the
estimation of this probability of attack, which, for a lot
of systems, is not only extremely difficult to analyze and
estimate, but might also change widely based on several
external factors.

Kodialam and Lakshman (2003) also modeled intrusion
detection as a zero-sum game, albeit between the ser-
vice provider and the intruder. Other game-theoretical
approach to solving the problem have been proposed by
Bier et al. (2007), who used the method increasing the
attractiveness of some ones to the attacker, while designat-
ing others as unimportant. The chief drawback of game-
theoretical approaches is that the final detection output is
possibly a mixed strategy, and not a function of the just
the inputs. That is, for the same inputs, the detector out-
put can change randomly based on which policy is chosen,
a behavior that may be undesirable in many systems.

Seeking a deterministic solution, we consider the behavior
of such a system in the presence of a powerful attacker,
without looking to estimate a probability that the ad-
versary will attack. We consider an attack model where
the adversary can attack up to a certain number of sen-
sors, while remaining undetected. We provide an insight
about what it means for an estimator to be robust in
such a scenario, using sensors of different specifications.
We analyze the robustness of such a detector for various
capabilities of the attacker. We then focus on the case
where all the sensors are equivalent, or at least, of similar
specifications, and provide a procedure for choosing the

detector specifications. We also explore the case where the
sensors fall into 2 distinct classes, of different specifications
— a case that is of special interest for infrastructures which
are under modernization, replacing a few sensors at a time
with better versions.

Robust detection with minimax have been previously
studied by Huber (1965), along with Strassen (Huber
and Strassen (1973)) and Kassam and Poor (1985), using
uncertainty classes and the detector being designed as a
naive-Bayes or Neymann-Pearson detector. The challenge
in such and approach is constructing the least favorable
distributions in the uncertainty classes, which are the
classes that are supposed to be the hardest for the detector
to distinguish.

This paper extends the results of Mo et al. (2012) in the
case of binary sensors and binary cases. The problem of
finding the sets defined in the paper has been handled, and
a procedure has been proposed to construct these sets in
specific cases.

The rest of this paper is organized as follows. In section
2, we define the system and the attacker strategy, and
formulate the problem as a minimax problem to minimize
the “worst-case” probability of detection. In section 3, we
develop definitions for robustness and detection probabil-
ities in such a scenario, and comment on the existence of
robust detectors. We also look at a detection scheme in the
case of a very restricted specification about the number of
sensors liable to be attacked. In section 7, we concentrate
on the case where all sensors are of equal specifications,
and look at another restricted specification about the
number of sensors. We propose a method of choosing the
optimal specifications for the detector. In section 9 we
explore the scenario of two sets of sensor specifications.
Section 10 concludes the paper, with discussions on future
work.

2. PROBLEM FORMULATION

Consider a binary random variable X , with distribution

X =

{

0 with probability P0

1 with probability P1
, (1)

where P0, P1 ≥ 0, and P0 + P1 = 1. Without loss of
generality, let P1 ≥ P0.

To detect X , we have available a vector

y =

⎛

⎜
⎜
⎝

y1
y2
...
ym

⎞

⎟
⎟
⎠

∈ {0, 1}m (2)

of m binary sensor measurement, each of which is condi-
tionally independent from the others given X . Let each
sensor have a probability of false alarm (α)

P
(

yi = 1
∣
∣X = 0

)

= αi, (3)

P
(

yi = 0
∣
∣X = 0

)

= 1− αi, (4)

i = 1, 2, . . . ,m,

and probability of detection (β)



P
(

yi = 1
∣
∣X = 1

)

= βi, (5)

P
(

yi = 0
∣
∣X = 1

)

= 1− βi, (6)

i = 1, 2, . . . ,m.

If any of the sensors are actually such that αi ≥ βi for some
values of i, the measurements provided by those sensors
can be inverted before being used, making αi ≤ βi. Thus,
without a loss of generality, we can consider αi ≤ βi ∀i.

In the case where there is no attack, a Bayes detection
algorithm suffices.

P0

m
∏

i=1

αyi

i (1− αi)
(1−yi)

H1

≶
H0

P1

m
∏

i=1

βyi

i (1− βi)
(1−yi) (7)

where H0 ≡ X̂ = 0 and H1 ≡ X̂ = 1.

2.1 Attack Strategy

It is assumed that an attacker wants to increase the
probability that the detector makes an error in detecting
X . The attacker has the ability to flip up to l of the
m sensor measurements, but the detector does not know
which of the m measurements have been manipulated.
While the detector knows that at most l measurements
have been manipulated, the exact number is also unknown
to the detector. This means that any detection scheme
X̂ = f (y) has to rely on the original measurement vector
(y) manipulated by the attack vector (ya)

yc = y ⊕ ya, (8)

where ya ∈ {0, 1}m, and ∥ya∥ ≤ l. 1 Here ⊕ denotes the
element-wise exclusive-or operation. By selecting which
bits of ya are 1, the attacker chooses which sensors to
attack.

2.2 Problem

The detection problem is formalized as a minimax problem
where one wants to select an optimal detector

X̂ = f (yc) = f (y ⊕ ya) , (9)

to minimize the probability of error (or maximize the
worst-case probability of detection as derived in section
3).

2.3 Attacker Knowledge

To have the detector follow the Kerckhoffs’ Principle
which states that, a cryptosystem should be secure even if
everything about the system, (except, of course, the key),
is public knowledge, we assume that the attacker has full
knowledge about f , the state of the system X , and all
measurements y1, y2, . . . , ym.

3. ROBUSTNESS AND IMPERTURBABLE SETS

The question arises about defining robustness of a detector
under such an attack. Since we are looking to maximize
1 In this paper, we are only dealing with binary states and sensor
measurements, where both the 0-norm and the 1-norm are equiva-
lent. Hence, for legibility we choose to drop the subscript, with the
understanding that it can be either the 0-norm or the 1-norm. Indeed,
the norm ∥·∥ can very well be replaced by ∥·∥pp , 0 ≤ p < ∞ mutatis

mutandis, without affecting any of the results.

the probability of detection in the worst possible case, we
need to look for all such sensor measurements, such that if
those are the measurements provided by the sensors, the
adversary can never affect enough of them to change the
detector output.

Given a detection scheme f(y), let Y0 be defined as the
set of true measurements y, for which any attack vector,
which follows the above attack strategy, cannot force the
estimate of X to be changed from 0 to 1. Similarly, let
Y1 be defined as the set of true measurements y, for which
any attack vector, which follows the above attack strategy,
cannot force the estimate of X to be changed from 1 to 0.
Formally,
Y0 =

{

y
∣
∣f(y ⊕ ya) = 0, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l

}

, (10)

Y1 =
{

y
∣
∣f(y ⊕ ya) = 1, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l

}

. (11)
Thus, an attacker cannot affect the detection from any
measurement which falls in the set Y0 ∪ Y1, which is, in a
sense, the “imperturbable set” for the detector.

The number of sensor measurements that fall in Y0 ∪Y1 is
a measure of the robustness of the detector.

Example Consider f to be a simple voting scheme, where
the detection output depends simply on the majority of
the sensor values (m can be considered to be odd to break
ties). Let m = 9, and l = 2. Thus,

f (y) =

{

0 if ∥y∥ ≤ 4
1 if ∥y∥ > 4.

(12)

It is easy to see that Y0 =
{

y
∣
∣ ∥y∥ ≤ 2

}

. If ∥y∥ ≤ 2, and
∥ya∥ ≤ 2, then ∥y ⊕ ya∥ ≤ 4, which will force f (y) = 0.
Similarly, it is easy to see that Y1 =

{

y
∣
∣ ∥y∥ ≥ 7

}

. If
∥y∥ ≥ 7, and ∥ya∥ ≤ 2, then ∥y ⊕ ya∥ ≥ 5, which will
force f (y) = 1. Thus Y0 and Y1, are “good sets” for the
detector.
Remark 1. It is important to note that, Y0∪Y1 ̸= {0, 1}m,
except in the case when l = 0 (there is no attacker). That
is, there will be measurements possible, which are neither
in Y0 nor in Y1. For these measurements, the attacker can
indeed change the output of the detector. In the above
example, if the measurement y is such that 3 ≤ ∥y∥ ≤ 6,
the attacker can change the detector output to be what he
chooses.

In the presence of an attacker, there will measurement
values for which the attacker is able to cause an error. In a
worst-case scenario, a malicious attacker will always cause
errors. Thus, only the points in Y0 and Y1 contribute to the
worst-case probability of detection. Consider X = 0. The
probability of getting measurement y ∈ Y0 given X = 0
(which will assure f (y ⊕ ya) = 0, ∀ya ∈ {0, 1}m , ∥ya∥ ≤ l)
is

∑

y∈Y0

(
m
∏

i=1

αyi

i ·
m
∏

i=1

(1− αi)
(1−yi)

)

. (13)

Similarly, the probability of getting measurement y ∈ Y1

given X = 1 (which will assure f (y ⊕ ya) = 1, ∀ya ∈
{0, 1}m , ∥ya∥ ≤ l) is

∑

y∈Y0

(
m∏

i=1

βyi

i ·
m∏

i=1

(1− βi)
(1−yi)

)

. (14)

Thus the total worst-case probability of detection (P ) is
given by



P = P0

∑

y∈Y0

(
m∏

i=1

αyi

i ·
m∏

i=1

(1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(
m∏

i=1

βyi

i ·
m∏

i=1

(1− βi)
(1−yi)

)

. (15)

Thus the problem of finding the optimal detector can be
formally stated as

maximize
Y0,Y1

P0

∑

y∈Y0

(
m
∏

i=1

αyi

i ·
m
∏

i=1

(1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(
m
∏

i=1

βyi

i ·
m
∏

i=1

(1− βi)
(1−yi)

)

,

(16)

subject to constraints of the problem, which will be for-
malized in further sections.

4. NO FEWER THAN HALF THE SENSORS
ATTACKED (L ≥

⌈
M
2

⌉

)

Theorem 2. If l ≥
⌈
m
2

⌉

, at least one of Y0 and Y1 is empty.

Proof. l ≥
⌈
m
2

⌉

⇒ m − l ≤ l. Suppose both sets are
non-empty. Let

y0 =
(

y01 y02 · · · y0m
)T

∈ Y0, (17)

y1 =
(

y11 y12 · · · y1m
)T

∈ Y1. (18)

Consider a measurement y,

y =
(

y01 y02 · · · y0l , y
1
l+1 y1l+2 · · · y1m

)

. (19)

Now, y = y0 ⊕ ya, i.e., ya = y ⊕ y0. Since the first l
values in ya are definitely zero, ∥ya∥ ≤ m − l ≤ l. By
the definition of Y0 (Eq. 10), and the fact that ∥ya∥ ≤ l,
it can be concluded that f (y) = 0. Let y = y1 ⊕ y′a, i.e.,
y′a = y⊕y1. Since the last m− l values in y′a are definitely
zero, ∥y′a∥ ≤ l. Again by the definition of Y1 (Eq. 11), and
the fact that ∥y′a∥ ≤ l, it can be concluded that f (y) = 1,
which contradicts the previous conclusion. Hence, one of
the two sets must be empty.

Remark 3. If one of the two sets must empty, the other
set can, and in general, should, contain all the possible
measurements. Essentially, this scheme is equivalent to
the detector disregarding the measurements and making a
decision based on the prior probabilities P0 and P1. Thus,
if l ≥

⌈
m
2

⌉

and P0 > P1, the detector should always detect

X̂ = 0, i.e, the set Y1 is empty and Y0 contains all possible
measurements. Similarly, if l ≥

⌈
m
2

⌉

and P1 > P0, the

detector should always detect X̂ = 1, i.e, the set Y0 is
empty and Y1 contains all possible measurements.

The conclusion of Theorem 2 is that if more than half the
number of sensors are attacked, the detector should throw
away all measurements and always give an output based
on the a priori probabilities, P0 and P1.

Thus from this point onwards, we can consider l ≤
⌊
m
2

⌋

.

5. FEWER THAN HALF THE SENSORS ATTACKED

Define a distance metric d as follows. Given a ∈ A and
b ∈ B,

d (a, b) = ∥a− b∥ , (20)
d (a,B) = min

b∈B
∥a− b∥ , (21)

d (A,B) = min
a∈A

∥a−B∥

= min
a∈A,b∈B

∥a− b∥ . (22)

Lemma 4. For any Y0, Y1 such that d (Y0, Y1) ≥ 2l+1 the

detector f , d (y, Y0)
f(y)=1

≶
f(y)=0

d (y, Y1), has Y0 and Y1 as the

imperturbable sets.

Proof. We only need to prove that f (y) = 0 ∀y ∈ Y0 and
f (y) = 1 ∀y ∈ Y1.

Consider y ∈ Y0. Let yc = y ⊕ ya. Since the attacker
can attack at most l measurements, ∥ya∥ ≤ l. Thus,
∥yc − y∥ ≤ l. Since y ∈ Y0, the distance metric to Y0

can only be equal to or smaller than the distance to y,
i.e., d (yc, Y0) ≤ l. Since y ∈ Y0, d (y, Y1) ≥ 2l + 1. Since
∥yc − y∥ ≤ l, by the triangle inequality, d (yc, Y1) ≥ l + 1.
Since, d (yc, Y0) ≤ l < 2l + 1 ≤ d (yc, Y1), f (y) = 0 for all
y ∈ Y0.

Similarly, consider y ∈ Y1. Let yc = y ⊕ ya. Since the
attacker can attack at most l measurements, ∥ya∥ ≤ l.
Thus, ∥yc − y∥ ≤ l. Since y ∈ Y1, the distance metric to
Y1 can only be equal to or smaller than the distance to y,
i.e., d (yc, Y1) ≤ l. Since y ∈ Y1, d (y, Y0) ≥ 2l + 1. Since
∥yc − y∥ ≤ l, by the triangle inequality, d (yc, Y0) ≥ l + 1.
Since, d (yc, Y1) ≤ l < 2l + 1 ≤ d (yc, Y0), f (y) = 1 for all
y ∈ Y1.

Remark 5. An intuitive way to see this result is that
since each attacked sensors counteracts the measurement
provided by an unattacked sensor, an attack on l out of
m sensors essentially means that the detection is carried
out using the measurements provided by m − 2l sensors.
Thus, ∀y0 ∈ Y0, y

1 ∈ Y1,
∥
∥y0 − y1

∥
∥ ≥ 2l+ 1. For example,

if m = 9 and l = 2, 2 unattacked sensors will counteract
the effect of 2 attacked sensors, leaving the detector to
estimate X̂ from 5 sensors. Thus

∥
∥y0 − y1

∥
∥ ≥ 5.

Thus the problem of finding the optimal detector can be
formally stated as

maximize
Y0,Y1

P0

∑

y∈Y0

(
m
∏

i=1

αyi

i ·
m
∏

i=1

(1− αi)
(1−yi)

)

+ P1

∑

y∈Y1

(
m
∏

i=1

βyi

i ·
m
∏

i=1

(1− βi)
(1−yi)

)

(23)

subject to d (Y0, Y1) ≥ 2l+ 1. (24)

6. SPECIAL CASE: L = M−1
2

The result of Lemma 4 is reduces to a simple form, for the
particular case where m is odd, and l = m−1

2 .

Corollary 6. If l = m−1
2 , |Y0| = |Y1| = 1. Further, if

Y0 =
{

y0
}

and Y1 =
{

y1
}

, y0 = ȳ1.

Proof. In this case, d (Y0, Y1) ≥ 2l+1. But 2l+1 = m and
the distance between two m-dimensional binary vectors
can be at most m. Thus, d (Y0, Y1) = m. Thus, for any



y0 ∈ Y0 and y1 ∈ Y1, y0 = ȳ1. Suppose that there is
another y′0 ∈ Y0 such that d

(

y′0, y1
)

= m. By the triangle
inequality, d

(

y′0, y0
)

≤ 0, i.e., y′0 = y0. Thus, Y0 is a
singleton set. Similarly it can be proved that Y1 is also a
singleton set.

Remark 7. If none of the sensors are “inverted”, then the
measurement that will form Y0 is yi = 0 ∀i (thus making
Y1 =

{

y
∣
∣yi = 1 ∀i

}

). To put it formally, if αi ≤ βi ∀i, then

Y0 =
{

(0 0 · · · 0)
T
}

and Y1 =
{

(1 1 · · · 1)
T
}

.

6.1 Complexity Of The Search-Space

The space of all possible measurements is {0, 1}m, i.e.,
there are 2m possible values of y. Each value can be in
Y0, Y1, or neither, thus giving rise to 32

m

possible ways of
designing Y0 and Y1, and hence, the detector.

Having said that, once one of the sets, say Y0, is fixed, it
is possible to expand Y1 for all measurements such that
d (Y0, Y1) ≥ 2l+ 1 is not violated, by finding all all points
at a distance 2l + 1 or more from each point in Y0, and
then taking the intersection of these. Even considering this
reduction, there are 22

m

possible ways of fixing Y0 and Y1.

This double-exponential behavior of the enumerations
makes a brute-force search impractical beyond a very small
value ofm — computers will run out of memory by m = 5.
m = 6 is intractable.

In the further sections, we will concentrate on reducing the
search-space for some oft-encountered cases.

7. ALL SENSORS ARE EQUIVALENT

It is unlikely to ever be the case, that each sensor is unlike
every other sensors — in a practical application, most, if
not all, sensors would have their false alarm and detection
rate equal. Even if the performance parameters are not
exactly equal, they would be close enough to each other,
that the sensors can be assumed to be equivalent:

αi = α, (25)
βi = β, (26)
i = 1, 2, . . . ,m.

Thus,

P = P0

∑

y∈Y0

α∥y∥ (1− α)(m−∥y∥)

+ P1

∑

y∈Y1

β∥y∥ (1− β)(m−∥y∥)
. (27)

The advantage of this assumptions lies in the fact that the
search for the optimal detector can be confined to only
those detector functions that are symmetric in sensor val-
ues. Further, for any detector that assumes all sensors are
equivalent, the detector function is a symmetric boolean
function, and the output of the detector is a function of
only the number of ones or zeros in the measurement
y (Wegener (1987)). Thus, the detector function f (y),

where y = (y1 y2 · · · ym)
T

can be one of several types
of counting functions:

T n
k (y) = 1 ⇐⇒ ∥y∥ ≥ k (threshold functions)

En
k (y) = 1 ⇐⇒ ∥y∥ = k (exactly-k-functions)

Cn
k,p (y) = 1 ⇐⇒ ∥y∥ = k mod p.

(counting functions)

In this case, however, the optimal detector function, i.e.,
the function with the maximum worst-case probability of
detection (among symmetric boolean functions) can be
proved to be a threshold function, i.e., it is monotonically
increasing.

Theorem 8. The optimal function g (∥y∥), defined to be a
symmetric boolean function with the maximum worst-case
probability of detection, is monotonically increasing.

Proof.

✲

✻

0

1

g

(i − 1 − l)
i

(i + l)
(j − 1 − l)

j

(j + l)
(k − 1 − l)

k

(k + l)
m1

✛✲Y0
✛✲Y1

✛✲Y0
✛✲Y1

(a) Non-Monotonic Function

✲

✻

0

1

g1

(i − 1 − l)
i

(i + l)
(j − 1 − l)

j

(j + l)
(k − 1 − l)

k

(k + l)
m1

✛✲Y0
✛ ✲Y1

(b) Monotonic Function g1

✲

✻

0

1

g2

(i − 1 − l)
i

(i + l)
(j − 1 − l)

j

(j + l)
(k − 1 − l)

k

(k + l)
m1

✛ ✲Y0
✛✲Y1

(c) Monotonic Function g2

Fig. 1. Detector Functions

By the assumption that none of the sensors are inverted,
g (0) = 0 and g (m) = 1. Suppose that the function g is
not monotonic, and has a “kink”. Thus, ∃i, j, k, such that
0 ≤ i < j < k ≤ m1 ≤ m and

g (n) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 if 0 ≤ n ≤ i− 1
1 if i ≤ n ≤ j − 1
0 if j ≤ n ≤ k − 1
1 if k ≤ n ≤ m1

(28)

An example function g with such a “kink” is shown in
Fig. 1a. Each kink in the function can be denoted by



unique values of (i, j, k,m1). In the following argument,
we consider only the kink closest to 0.

Since the detector function is given by

g (∥y∥) =

{

0 if d (y, Y0) > d (y, Y1)
1 if d (y, Y0) ≤ d (y, Y1) ,

(29)

where,
d (Y0, Y1) ≥ 2l+ 1, (30)

the subsets of Y0 and Y1 that lie in the range [0,m1] can
be computed to be

Y0 =
{

y
∣
∣0 ≤ ∥y∥ ≤ (i− 1− l)

}

∪
{

y
∣
∣ (j + l) ≤ ∥y∥ ≤ (k − 1− l)

}

(31)

Y1 =
{

y
∣
∣ (k + l) ≤ ∥y∥ ≤ m1

}

∪
{

y
∣
∣ (i+ l) ≤ ∥y∥ ≤ (j − 1− l)

}

(32)

Depending upon the value of m1 as compared to m, there
can be other subsets of Y0 and/or Y1 beyond the range
that we consider. However, the presence of such subsets
will not affect the argument.

These sets are also shown in Fig. 1a. Now consider two
other functions, g1, g2 ̸≡ g as follows:

g1 (n) =

⎧

⎨

⎩

0 if 0 ≤ n ≤ i− 1
1 if i ≤ n ≤ m1

g (n) if m1 ≤ n ≤ m

(33)

g2 (n) =

⎧

⎨

⎩

0 if 0 ≤ n ≤ k − 1
1 if k ≤ n ≤ m1

g (n) if m1 ≤ n ≤ m

(34)

The corresponding subsets of Y 1
0 , Y

1
1 , Y

2
0 , and Y 2

1 within
the range [0,m1] are given by

Y 1
0 =

{

y
∣
∣0 ≤ ∥y∥ ≤ (i − 1− l)

}

(35)

Y 1
1 =

{

y
∣
∣ (i+ l) ≤ ∥y∥ ≤ m1

}

(36)

Y 2
0 =

{

y
∣
∣0 ≤ ∥y∥ ≤ (k − 1− l)

}

(37)

Y 2
1 =

{

y
∣
∣ (k + l) ≤ ∥y∥ ≤ m1

}

(38)

These two functions, along with the sets are shown in Figs.
1b and 1c. It can be seen that g1 and g2 are defined in a
way to have only one of the two 0 → 1 transitions of the
first kink in g. Now, using the definition of the worst-case
probability of detection, the probability Pd for the detector
function g can be given by

Pd = P0

i−1−l
∑

n=0

αn (1− α)m−n + P0

k−1−l
∑

n=j+l

αn (1− α)m−n +

P1

j−1−l
∑

n=i+l

βn (1− β)m−n + P1

m1∑

n=k+l

βn (1− β)m−n +

P(m1,m),

where P(m1,m) denotes the contribution to the worst-case
probability of detection, of the part of the function that
lies beyond the range [0,m1] that we consider. Compar-
atively, the worst-case detection probabilities P 1

d and P 2
d

for the constructed functions g1 and g2 respectively, can
be calculated to be

P 1
d = Pd−

⎛

⎝P0

k−1−l
∑

n=j+l

αn (1− α)m−n − P1

k−1−l
∑

n=j+l

βn (1− β)m−n

⎞

⎠

︸ ︷︷ ︸

Pdiff

+ P1

j+l
∑

n=j−1−l

βn (1− β)m−n + P1

k+l
∑

n=k−1−l

βn (1− β)m−n

︸ ︷︷ ︸

Pβ

,

and

P 2
d = Pd+

⎛

⎝P0

k−1−l
∑

n=j+l

αn (1− α)m−n − P1

k−1−l
∑

n=j+l

βn (1− β)m−n

⎞

⎠

︸ ︷︷ ︸

Pdiff

+ P0

i+l
∑

n=i−1−l

αn (1− α)m−n + P0

j+l
∑

n=j−1−l

αn (1− α)m−n

︸ ︷︷ ︸

Pα

.

That is,

P 1
d = Pd − Pdiff + Pβ

P 2
d = Pd + Pdiff + Pα.

We know that Pα, Pβ ≥ 0. Now, for g to be optimal,
Pd ≥ P 1

d and Pd ≥ P 2
d . But,

Pd ≥ P 1
d

⇐⇒ Pd ≥ Pd − Pdiff + Pβ

⇐⇒ Pdiff ≥ Pβ

⇒ Pdiff ≥ 0, (39)

and

Pd ≥ P 2
d

⇐⇒ Pd ≥ Pd + Pdiff + Pα

⇐⇒ −Pdiff ≥ Pα

⇒ Pdiff ≤ 0. (40)

The only way these inequalities are satisfied, is if Pdiff =
Pα = Pβ = 0. This will be the case if α = β (in which
case, all three probabilities are equal), or i = j = k (there
is no kink). The first case is discounted by the assumption
that α < β, and in the second case, all three functions
g, g1, and g2 are equivalent, which is discounted by the
assumption g1, g2 ̸≡ g. This is a contradiction.

Thus, the worst-case probability of detection of any func-
tion g can only be increased by removing the first such
kink in g. If the function g has more than one kink,
upon removal of the first kink in g, there will be a new
“first kink” in the new function. However, the above result
can be applied successively to each such kink, leading
to the conclusion that the optimal g, the one that has
the maximum worst-case probability of detection, has no
such kinks, i.e., the optimal g has to be monotonically
increasing.

Since the the optimal detector function has only one 0 → 1
transition, it can be defined only by one parameter, the
threshold. The results of Lemma 4 can be combined with
Theorem 8, to obtain the conditions for the threshold:
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(c) P0 = 0.3, P1 = 0.7,α = 0.2,β = 0.8

Fig. 2. Worst-Case probability of detection P as a function
of n, for m = 9 and l = 3.

Corollary 9. In a system where all m sensors have equiv-
alent specifications, and the attacker can attack up to l
sensors, the the sets Y0 and Y1 which maximize the worst-

case probability of detection such that d (Y0, Y1) ≥ k, are
given by

Y0 =
{

y
∣
∣ ∥y∥ ≤ n

}

, (41)

Y1 =
{

y
∣
∣ ∥y∥ ≥ n+ 2l + 1

}

, (42)

for some integer n such that 0 ≤ n ≤ m−1
2 . The detector

function is therefore given by

f (∥y∥) =

{

0 if ∥y∥ ≤ n+ l

1 if ∥y∥ ≥ n+ l + 1.
(43)

8. GENERAL VALUES OF L

We now consider other values of l <
⌊
m−1
2

⌋

. For given
m and l, the worst-case probability of detection P is a
function of n parametrically dependent on P0, P1, α and
β. The shape of the function varies widely with a small
change in these values, and cannot be said to be either
convex or concave. For example, for m = 9 and l = 3 we
get the plots of worst-case probability of detection P vs n
for different values of α and β, shown in Fig. 2.

As a result, it is impossible to predict a closed form
expression for n. The only solution is to do on exhaustive
search for n = 0 through n = m− 2l − 1. This is a linear
search and thus tractable even for large values of m and l.

9. TWO CLASSES OF SENSORS

There is an often-encountered case in practical applica-
tions, where the sensors can be grouped into two classes
— “good” sensors, and “better” sensors. This is usually
the case when the sensors of a legacy network are being
upgraded in steps, or when the better sensors are much
more expensive than the good ones to be considered worth
it. In such a case, a compromise can be reached by only
installing a few better sensors, while most of the network
is composed of the cheaper sensors. For example, Phasor
Measurement Units (PMUs) are so expensive compared
to power meters, that only a few substations have them
installed. Although the power grid can be considered to
be in the process of being upgraded, even the best case
distribution of the PMUs is expected to be around 30% of
the total sensors.

αi = αa, (44)
βi = βa, (45)
i = 1, 2, . . . ,ma.

αi = αb, (46)
βi = βb, (47)
i = ma + 1,ma + 2, . . . ,ma +mb = m.

Let

y =

(
(y1 y2 · · · yma)
︸ ︷︷ ︸

ya

(yma+1 yma+2 · · · ym=ma+mb)
︸ ︷︷ ︸

yb

)

(48)

The search for the optimal detector can be confined to only
those detector functions that are symmetric in ya and yb,
making f (y1, y2, . . . , ym) = g (∥ya∥ , ∥yb∥).
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Fig. 3. Optimal Y0 (blue) and Y1 (red) for ma = 4, mb = 3,
with P0 = P1 = 0.5 and αa = 0.1, βa = 0.9, αb = 0.2,
βb = 0.8. The paler colors denote the corresponding
decision when the point is neither in Y0 nor Y1.

P = P0

∑

(ya yb)
T
∈Y0

(

α∥ya∥
a (1− αa)

(ma−∥ya∥) ·

α
∥yb∥
b (1− αb)

(mb−∥yb∥)
)

+ P1

∑

(ya yb)
T
∈Y1

(

β∥ya∥
a (1− βa)

(ma−∥ya∥) ·

β
∥yb∥
b (1− βb)

(mb−∥yb∥)
)

. (49)

This case reduces to a search over a 2-D space. However,
equivalent conditions of monotonicity do not hold. As a
counterexample, consider ma = 4, mb = 3, with P0 =
P1 = 0.5 and αa = 0.1, βa = 0.9, αb = 0.2, βb = 0.8. The
optimal Y0 and Y1 are given in Fig. 3.

Thus, the search needs to be carried over a space of
2(ma+1)(mb+1) possible combinations of Y0 and Y1. This
is a significant reduction in complexity over the double-
exponential nature of the original problem, and tractable
for values of m ≤ 12.

10. CONCLUSION

We proposed a new approach to estimate a binary random
variable based on a vector of sensor measurements that
may have been corrupted by an attacker. The problem was
formulated as a minimax problem with detector attempt-
ing to maximize the worst-case probability of detection,
and the attacker attempting to minimize this probability.
A tractable form of the detector was derived in the case
where the sensors are either all of equivalent specifications,
or belong to one of two classes of specifications.

Future work will involve reducing the search space for
two classes of detectors to make higher number of sensors
tractable, and extending the results to sensors with integer
outputs instead of binary outputs.
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