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ABSTRACT  |  Most existing industrial control systems (ICSs), 

such as building energy management systems (EMSs), were 

installed when potential security threats were only physical. 

With advances in connectivity, ICSs are now, typically, connected 

to communications networks and, as a result, can be accessed 

remotely. This extends the attack surface to include the potential 

for sophisticated cyber attacks, which can adversely impact ICS 

operation, resulting in service interruption, equipment damage, 

safety concerns, and associated financial implications. In this 

work, a novel cyber�physical security framework for ICSs is 

proposed, which incorporates an analytics tool for attack 

detection and executes a reliable estimation-based attack-

resilient control policy, whenever an attack is detected. The 

proposed framework is adaptable to already implemented ICS 

and the stability and optimal performance of the controlled 

system under attack has been proved. The performance of the 

proposed framework is evaluated using a reduced order model 

of a real EMS site and simulated attacks.
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I .   IN TRODUCTION

Industrial control systems (ICSs) play an important role in 
the monitoring and control of physical and chemical pro-
cesses. ICS is a general term that encompasses several types 
of control systems, used in industrial production, includ-
ing supervisory control and data acquisition (SCADA) sys-
tems, distributed control systems (DCSs), and other smaller 
control system configurations such as programmable logic 
controllers (PLCs), often found in the industrial sectors and 
critical infrastructures. ICSs are commonly seen in many 
critical infrastructures, such as electricity generation, trans-
mission and distribution, water treatment, manufacturing, 
etc. [1]. In electricity distribution grids and, especially, in res-
idential areas, automatic control of electrical/thermal com-
ponents in buildings has become a necessary task for ICSs, 
in order to achieve optimal performance. In this context, the 
ICS is often called an energy management system (EMS).

The aim of a modern EMS is to enhance the function-
ality of interactive control strategies leading toward 
energy efficiency and a more comfortable or user-friendly 
environment. In recent years, EMSs and, more generally, 
ICSs, have been connected to communication networks, 
allowing remote monitoring and control of the underlying 
processes. While this can enable significant efficiency and 
usability benefits, it also increases the possibility of cyber 
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attacks by providing an access point for would-be attackers 
to infiltrate the system. There have been a number of high 
profile attacks, in recent years, highlighting the need for 
appropriate security measures to protect ICS infrastructure, 
as will be discussed in more detail in Section II.

Many studies have been done on fault-tolerant control 
(see, for example, [2]–[4]), which can provide tools for 
attack-resilient control as well. However, there are substan-
tial differences between the fault-tolerant and attack-resil-
ient control, when it comes to attack detection and isola-
tion, which motivate the need for specific methodologies to 
address security issues in ICSs. For example, faults are con-
sidered as physical events that affect the system behavior, 
where the events do not act in a coordinated way, while 
cyber attacks may be performed over a significant number 
of attack points in a coordinated fashion [5], [6]. In addi-
tion, faults do not have an intent or objective to fulfill, 
whilst cyber attacks do have a malicious intent.

In this work, a novel cybersecurity framework for ICS, is 
presented. The focus of the paper is on EMSs, as an example 
of ICSs. However, the framework is extendable to other ICS 
applications by considering the domain risk assessment that 
identifies the critical process and the corresponding resil-
ience policies. The framework consists of an attack detection 
module, which relies on data analytics to detect anomalies in 
the EMS data, and a resilient control policy, which main-
tains the physical system in a safe state, during and after an 
attack. The main contributions of this paper are: 1) an evalu-
ation of the combination of domain-specific expert knowl-
edge (physical models) and data-driven machine learning 
algorithms for the detection of anomalies in data measured 
from the sensors in the industrial control systems (Section 
IV-A); 2) the adoption of a novel security metric [7], dedi-
cated to measuring cybersecurity in industrial control sys-
tems, for evaluation purposes (Section V-B); 3) adaptation of 
fault-tolerant control techniques (virtual sensing) in a net-
worked control system to mitigate cyber attacks; the pro-
posed framework is adaptable to already implemented ICSs, 
with no need for major re-design of the local control loops 
(Section IV-B); and 4) the strengthening of available theoret-
ical results proving stability and optimal performance, and 
the illustration of how a small number of carefully selected 
trusted (protected) sensors greatly can reduce the capabili-
ties of a man-in-the-middle attacker (Section IV-B).

The remainder of this paper is organized as follows. Sec-
tion II outlines the state of the art and motivation for the 
work. Section III defines the scope of the work by 1) provid-
ing a detailed description of ICS hierarchy; 2) introducing a 
testbed, which has been used to evaluate the feasibility of 
the proposed cyber–physical security framework; and 3) 
defining the attack models under consideration. The 
proposed security framework is presented in Section IV, 
focusing on attack detection, resilient control, and attack iso-
lation. In Section V, simulated data are described and the 
performance of the proposed framework, in terms of attack 

detection and resiliency against attacks, is evaluated. Final 
remarks and conclusions are discussed in Section VI.

II .   BACKGROU ND A ND MOTI VATION

In this section, state of the art and motivation for our work 
is presented, from the perspectives of assessing threats and 
risk, detecting attacks when they occur and implementing 
resilient control in a system under attack.

A. ICS Cyber-Attack Threats and Risk Assessment

Applying cybersecurity specific solutions (e.g., antivirus 
and firewalls) on ICSs is of a great value to reduce system 
vulnerabilities and protect system accessibility. Most of 
these solutions are oriented to monitor and protect the cyber 
part of the ICS such as network and devices layers. However, 
ICS introduces more security vulnerability due the tight 
integration between the controlled physical environment 
and the cyber system [8]. Therefore, system-level security 
methods are required for ICS to analyse the physical system 
behavior to maintain system operation availability.

Failing to maintain state awareness and acceptable per-
formance of ICSs under unexpected cyber–physical faults or 
attacks can have considerable consequences. The 
U.S./Canada Northeastern blackout in 2003, which was 
caused by a software bug in the alarm system, illustrated that 
loss of state awareness of the ICS can result in severe econom-
ical losses [9]. The StuxNet cyber attack [10], supposedly tar-
geting a nuclear-enrichment plant by corrupting the measure-
ments and actuator signals in Iran, and BlackEnergy mal-
ware, targeting several electricity distribution companies in 
Ukraine [11], are further examples of cyber attacks against 
ICSs. As discussed in [12], attacks on the measurement sig-
nals may lead to a poor system performance or may cause 
instability of the process under the control of the ICSs. The 
impact of such attacks can range from financial losses to 
equipment damage and, even, danger to life. Thus, it is cru-
cial to make the control of ICSs resilient against cyber crime.

Existing methods for EMS cybersecurity are mainly based 
on running tests and benchmarks to analyse the system vul-
nerabilities and evaluate possible cyber attacks and their 
impact; see [13]. Typically, the risk assessment is carried out 
using a set of best practices, as follows: 1) identify information 
assets; 2) locate information assets; 3) classify information 
assets; 4) conduct a threat modeling; and 5) apply a security 
plan [14]. In addition, there are many formal methods that 
can be applied to EMS risk assessment, as described in [15].

One such method is fault tree analysis (FTA) [16], 
where the attack impact is evaluated based on system com-
ponent dependencies. The framework proposed in this 
paper originated in a risk assessment based on the FTA 
method, combined with an empirical study that quantifies 
the financial and safety impact of an attack [17], [18]. 
Smart-grid infrastructure can control both electrical and 
thermal loads, where some equipment, such as combined 
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heat and power (CHP) can be an energy source for both 
electrical and thermal demand. In this context, heating, 
ventilation, and air conditioning (HVAC) systems are con-
sidered an important contributor to energy consumption, 
making them a target for attacks with financial impact. In 
addition, attacking the EMS in a smart grid can lead to a 
safety risk [19], due to damage to the water transport sys-
tem or heating sources (e.g., CHP and boilers).

The focus of this work is on so-called “man-in-the-mid-
dle” attacks, whereby the attacker can intercept communica-
tions between components in the system and manipulate or 
corrupt the values of measurements or commands being sent 
and received. There are studies which consider several attack 
scenarios where the adversary’s goal is to drive the system to 
an unsafe state without triggering any alarm [20], [21]. These 
attacks are called stealthy attacks. A particular class of 
stealthy attacks that has raised a lot of interest in the 
research literature is the class of 0-stealthy attacks, which 
are also called undetectable attacks; see, for instance, [5]  
and [22]. In short, these attacks refer to an attacker who is 
able to corrupt measurements in a manner that they exactly 
correspond to a valid physical state of the system. These 
attacks are undetectable, in the sense that any fault or attack 
detector that simply detects when received measurements do 
not satisfy physical laws or relationships will not generate an 
alarm. The detector proposed in this work is designed to 
detect attacks even when the attacked variables are physi-
cally valid, as described in Section IV-A. 0−stealthy attacks 
typically require plant-wide corruption of measurements to 
be feasible [23]. An important property of the resilience pol-
icy proposed in this work is to ensure that such an attack 
cannot destabilise the system. This property is obtained by 
protecting a small, but carefully selected, number of sensors, 
as will be described in Section IV-B.

B. Attack Detection

Recently, there has been an increase in research into 
the limitations of the existing attack detection and identifi-
cation methods [22], [24], [25]. The time during which vul-
nerabilities remain hidden, together with the time required 
to patch them, leave a window large enough for adversarial 
system penetration. These factors highlight the importance 
of detecting attacks as soon as possible, in order to mini-
mize damage and impact.

Analytics capabilities enable quick detection of cyber 
attacks by checking the system behavior at application level 
and responding quickly to minimize the attacks’ impact. As 
studied in [26], the operational model must go beyond the 
conventional focus on distribution and generation infra-
structure for fault isolation, remediation and recovery, and 
focus on information and a new understanding of data 
analysis. In addition, as discussed in [27], it requires the 
ability to handle processing of huge amounts of data, by 
using new analytics and visualization techniques. In this 

work, a security information analytics tool will be pro-
posed, using SCADA and EMS data for the detection of 
man-in-the-middle attacks.

C. Resilient Control

Once an attack is diagnosed, control policies which are 
resilient against the attacks, should be triggered. Since 
cyber attacks to ICSs also affect the physical behavior of 
the system, the tools used for fault-tolerant control can be 
applied for attack-resilient control. For example, virtual 
sensor concepts, as described in [2] to deal with sensor fail-
ures, can be used in the case of sensor attack, as will be 
shown in this work. Different approaches have been stud-
ied for increasing the system resiliency against attacks 
[28]–[32]. In [28], Schenato et al. consider the problem of 
control and estimation in a networked system when the 
communication links are subject to disturbances (corre-
sponding to packet losses), resulting from a denial-of-ser-
vice (DoS) attack, for instance. The estimation and control 
of linear systems, when some of the sensors or actuators 
are corrupted by an attacker, is studied in [29]. In that 
work, they propose an efficient algorithm, inspired by tech-
niques in compressed sensing, to estimate the state of the 
plant despite attacks. The authors assume that the attacked 
nodes does not change over time. In addition, a general 
framework to model and analyse impact of attacks, is pro-
posed in [5]. In [30], a method for state estimation in the 
presence of attacks, for systems with noise and modeling 
errors, is proposed. In that work, it is shown that the 
attacker cannot destabilize the system by exploiting the 
difference between the model used for state estimation and 
the real physical dynamics of the system. In [31], a control 
technique is proposed which is resilient against certain 
sensor attacks. In that technique, a recursive filtering algo-
rithm, to estimate the states of the system, is implemented, 
taking advantage of redundancy in the information 
received by the controller. The resilience policy proposed 
in this work is designed to maintain the stability and opti-
mal performance of the system, whilst preventing unde-
tectable attacks.

III .   ICS STRUCT U R E A ND AT TACK 
MODELS

In this section, we provide a detailed description of ICS’s 
hierarchy, introduce a testbed being used to evaluate the 
feasibility of the proposed cyber–physical security frame-
work, and define the attack models under consideration.

A. ICS Hierarchy

A general hierarchical structure of an ICS is composed 
of a lower layer and a supervisory layer, both of which will 
be described below. Our proposed attack-resilient frame-
work is found in the supervisory layer.
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1) Lower Layer: The lower layer of the ICS, known as 
the plant, consists of the physical interconnected infra-
structure and local controllers. A schematic of the plant is 
illustrated in Fig. 1, showing a linear, closed-loop system. 
In the figure, the physical interconnected infrastructure is 
represented by a number ​N​ of interconnected processes 
(​​P ​i​​,  i   ∈   Φ ​),  which are controlled by the loca l 
controllers (​​K​i​​, i  ∈  Φ​), where ​Φ  =  { 1, …,  N}​ is the index 
set of processes. In this system, the controllers send the 
control vector signal ​u  = ​ [​u​1​​… ​u​N​​]​​ ⊤​​ to the processes and 
receive the sensor measurements ​y  = ​ [​y​1​​… ​y​N​​]​​ ⊤​​ 
from them.

The closed-loop interconnected system evolves as

	​ x(k + 1)  = ​ A​​ cl​ x(k) + ​B​ 1​ 
cl​ d(k) + M​[​

w(k)
​ 

ν(k)
 ​]​�

(1)
                      y(k)  = ​ C​​ cl​ x(k) + L​[​

w(k)
​ 

ν(k)
 ​]​​,​

where, at the ​k​th instant, ​x  ∈ ​ ℝ​​ ​n​x​​​​ is the state vector of 
the plant, with a number ​​n​x​​​ of state variables, ​y  ∈ ​ ℝ​​ N​​ is 
the measurement vector being sent to the controllers, and 
​d  ∈ ​ ℝ​​ N​​ is a deterministic disturbance vector. Here, ​w​ and ​
ν​ are process and measurement zero-mean Gaussian white 
noise, respectively. The dimensions of the matrices ​​A​​ cl​​, 
​​B​ 1​ 

cl​​, ​M​, ​​C​​ cl​​, and ​L​ conform with the relevant vectors. Let the 
expectation and the covariance of ​w​ and ​ν​ be given by

	​ E​[​
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​ 
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 ​]​  =  0,    E​[​
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​ 
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 ​]​ ​​[​
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​ 
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 ​]​​​ 
⊤
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​R​12​​
​ ​R​21​​

​  ​R​22​​​]​ 

 

 


 

R

 ​ ​ δ​ kl​​​� (2)

where ​​R​11​​​ and ​​R​22​​​ are the covariance of ​w​ and ​ν​, respectively, 
and ​​R​12​​  = ​ R​ 21​ 

⊤ ​​  is the cross covariance between ​w​ and​ ν​.
Note that the system described by (1) is considered to 

be in a normal state, with no anomaly in the received 
control and measurement signals, ​​​u ̃ ​​i​​​ and ​​​y ̃ ​​i​​​, respectively. 
This means that ​​​u ̃ ​​i​​  = ​ u​i​​​ and ​​​y ̃ ​​i​​  = ​ y​i​​​, ​i  ∈  Φ​. Under this 
condition, we have the following assumption, which cap-
tures that the plant is assumed to be stable and well-
configured initially.

Assumption 1: The linear closed-loop system (1) is sta-
ble, which means matrix ​​A​​ cl​​ is Schur stable (i.e., 
​ρ( ​A​​ cl​ )  <  1​), and, also, the pair (​​A​​ cl​​, ​​C​​ cl​​) is observable.

2) Supervisory Layer: The supervisory layer, often 
referred to as the supervisory controller, can be viewed as 
the brain of the system. A schematic of the supervisory 
controller is illustrated in Fig. 2, consisting of three crucial 
subtasks [2].

1) � Attack/fault detection: determine whether an 
attack/fault has occurred. (See Section III-C for a 
description of attack models.)

2) � Attack/fault isolation: identify which measurements 
have been manipulated by the attack/fault (e.g., 
​​​y ̃ ​​i​​  ≠ ​ y​i​​​). It should be noted that, in this work, it is 
assumed that there is no attack on the control sig-
nals, such that ​​​u ̃ ​​i​​  = ​ u​i​​​, ​i  ∈  Φ​. However, the 
framework can be easily extended to include also 
the attacks on the control signals.

3) � Controller reconfiguration: when an attack/fault is 
detected, reconfigure the associated control loops.

In our proposed framework, illustrated in Fig. 2, the 
security information analytics (SIA) tool in the super-
visory controller is responsible for attack detection (see 
Section  IV-A). To perform the controller reconfiguration, 
the resilience policy applies estimation-based methods to 
generate correction signals (see Section IV-B). Attack iso-
lation is outside the scope of this paper; in Section IV-A, 
we briefly indicate how the proposed tools can contribute to 
isolation but a complete treatment of the isolation problem 
will be reported in future work. It should also be noted that 
we do not consider, in this work, cases where the supervi-
sory layer is subject to attack, such as those discussed in [33].

B. Testbed Description

As a proof of concept for the cybersecurity framework 
developed in this work, an EMS which controls a small-
sized smart-grid, covering several buildings at the Cork 

Fig. 1. Schematic of a linear closed-loop system. Fig. 2. Schematic of the supervisory controller.
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Institute of Technology (CIT, Ireland), is considered. A 
detailed description of the grid can be found in [34]. In the 
following, the main components used by the EMS to con-
trol the HVAC system will be highlighted. The modeling 
techniques used to capture the system dynamics will also 
be discussed briefly.

Fig. 3 shows the HVAC system at the CIT demo site, 
which is considered to be the highest source of energy con-
sumption in the building operation. The HVAC system con-
sists of many functions that are controlled by various con-
trol elements under the EMSs, including SCADA and 
building management system (BMS). SCADA manages the 
electrical component operations (e.g., CHP) and the BMS 
manages the operation of thermal components (e.g., boil-
ers). Here, the CHP and boiler heat water to a defined tem-
perature setpoint, which is identified using a weather com-
pensation method [35]; an on/off controller is, then, used 
to keep the water in the heating sources at its setpoint. 
Whether the boiler and/or CHP are in operation, at any 
given time, is dependent on the thermal load in the build-
ing, which is indicated by the return temperature. Mixing 
valves, controlled by a proportional–integral (PI) control 
algorithm, regulate the supply temperatures for each floor 
in each building and water is distributed across several 
radiators in each floor, where each radiator is controlled 
using an on/off controller to reach a predefined room tem-
perature set-point.

The proposed resilience policy, which will be described 
in Section IV-B, requires a linearised model of the con-
trolled HVAC system. To arrive at the linear state–space 
model of this system, given in (1)–(2), subspace identifi-
cation, followed by a prediction error method [36], was 
applied. This system identification has been discussed, in 
detail, in [18] and [37]. Modeling the system, in this man-
ner, results in a simple, linear, third-order system, in an 
innovation form.

C. Attack Models

The “man-in-the-middle” attacker, considered in this 
work, can secretly listen to the values being communicated 
between the processes and controllers in the lower layer 
and has the ability to manipulate or corrupt the measure-
ment signals ​​y​i​​​. For example, the attacker can modify the 

measurements by placing a malware in the PLC used by the 
BMS to control the HVAC system. Furthermore, this 
attacker may have knowledge of the model of the plant. 
The supervisory layer is assumed not to be accessible by the 
attacker. For example, consider that the measurement ​​y​i​​​ is 
manipulated by adding an offset ​Δ​y​i​​​. Thus, a measure-
ments’ attack vector ​Δy  = ​ [Δ​y​1​​… Δ​y​N​​]​​ ⊤​​ is defined, which 
has nonzero entries for measurements under attack and 
zero values for all other measurements. A general model 
for the measurement signals received by the local control-
lers and, subsequently, by the supervisory controller, can, 
then, be given by

	​​ y ̃ ​  =  y + Δy.​� (3)

D. Undetectable (0-Stealthy) Attacks

By assuming that ​d  =  0​, for an attack signal ​Δy​ to be 
undetectable, there must exist an initial state ​​x​0​​​, which 
results in ​​y ̃ ​  =  0​. Existence of such a signal can easily be 
checked by considering the matrix pencil (Rosenbrock sys-
tem matrix), a detailed discussion of which can be found in 
[18] and [37]. As discussed in those works, we can ensure 
that no undetectable attacks exist by protecting a subset of 
the sensors in ​​C​​ cl​​ (i.e., removing the corresponding ele-
ments of ​Δy​). It should be noted that, currently, there is no 
systematic way, beyond enumerative schemes, to find the 
desired subset of the sensors; this is an interesting topic for 
future work.

A number of methods exist for protecting the measure-
ments, such as, for instance, measurement signal encryp-
tion or hard wiring. For further discussions on signal 
protection in SCADA systems, see [23].

Definition 1: Considering that some of the measure-
ments are protected, we classify measurements into the fol-
lowing four types.

1) � Unprotected measurements: we assume the attacker 
can have access to at most a number ​m​ of sensor 
measurements ​​y​j​​​ for ​j  ∈  Γ​. Here, ​Γ  ⊂  Φ​ is the 
index set of unprotected measurements and the car-
dinality of ​Γ​ is ​card(Γ)  =  m​.

2) � Protected measurements: these measurement are 
not accessible by the attacker. Here, ​​Γ​​ C​  =  Φ⧵Γ​ is 
the index set of protected measurements, where ​
card(​Γ​​ C​)  =  N − m  =  h​.

3) � Attacked measurements: since attacking all the 
unprotected measurements is costly for the attacker, 
some of them may be unattacked by the attacker. 
Thus, we define the set of attacked measurements ​​y​j​​​ 
for ​j  ∈ ​ Γ​​ a​​. Here, ​​Γ​​ a​  ⊂  Γ​ is the index set of 
attacked measurements (​0  ≤  card(​Γ​​ a​)  ≤  m​), and 
we have ​​​y ̃ ​​i​​  ≠ ​ y​i​​​, ​∀ i  ∈ ​ Γ​​ a​​.

4) � Healthy measurements: here, ​​Γ​​ h​  =  Φ⧵​Γ​​ a​​ is the 
index set of healthy measurements, and we have 
​​​y ̃ ​​i​​  = ​ y​i​​​, ​∀ i  ∈ ​ Γ​​ h​​.Fig. 3. BMS for HVAC system at the CIT demo site.
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Note that, in principle, the attacker can observe and 
manipulate any or all of the unprotected measurements, 
given enough resources.

I V.   PROPOSED ICS SECU R IT Y 
FR A ME WOR K

Here, we propose a strategy for attack detection and control 
reconfiguration, to ensure the stability and optimal perfor-
mance of the controlled system under attack.

A. Attack Detection

The security information analytics (SIA) tool is respon-
sible for detecting potential attacks. It consists of a set of 
anomaly detection algorithms and a web application that 
allows analysts to examine the results. In this work, the 
focus is on the algorithms and their performance; as such, 
the web application is not described in detail.

The SIA tool uses a combination of 1) domain-specific 
expert knowledge and 2) machine learning algorithms, to 
understand the behavior of the system under normal, sta-
ble operating conditions, and to detect any anomalies or 
deviations from normal behavior. These anomalies are 
flagged as potential attacks and the resilience policy is trig-
gered to maintain stability of the system, while further 
investigation into the anomalies is carried out.

The combination of expert knowledge and data-driven 
machine learning approaches aims to provide a high 
attack detection rate, in the face of highly sophisticated 
attackers. The expert knowledge component exploits 
domain-specific physical laws and system topology, to 
define the explicit relationships between different vari-
ables in the system; if these relationships are not satisfied 
by the measured variables, it may indicate that one or 
more of the variables is under attack. There also exist 
other, less formal dependencies between variables, which, 
perhaps, are defined by highly complex relationships 
among many elements of the system or, for which formal 
relationships cannot be explicitly defined. Furthermore, 
given certain conditions, particular behaviors may be 
unlikely; for example, it might be improbable, but not 
impossible, for the heating system to be turned on in a 
building when the external temperature is high, or it 
might be unlikely for the energy consumption in a house-
hold to be constant throughout the day and night. Despite 
not having explicit definitions, these relationships 
between operating conditions and measured variables can 
play an important role in detecting abnormal behavior in 
the system and, especially, in detecting stealthy attacks. A 
well-designed machine learning algorithm can allow the 
implicit patterns and dependencies in the data to be 
learned, building a model that represents the normal 
behavior of the system. Measured data can then be com-
pared to the model to determine if the system is operating 
normally or not.

Fig. 4 shows the components of the SIA, illustrating the 
dependency of the data-driven (DD) detector on the knowl-
edge-based (KB) components. Details of the KB and DD 
algorithms, implemented in the SIA tool, are described in 
Sections IV-A1 and IV-A2, respectively.

1) Knowledge-Based Anomaly Detection: The KB detector 
includes a) thresholds, which include safety limits (such as 
maximum allowable temperature for a boiler or current rat-
ing for an electrical element) and device specifications (such 
as nominal operating temperature, voltage, frequency, etc.), 
applied directly to the measured variables, along with b) 
physical rules and relationships between multiple variables 
(such as Ohm’s law, relating voltage, current and impedance, 
and other similar rules governing variables measured in the 
system). Static rules, relating the measured room tempera-
tures with their corresponding setpoints (i.e., the relevant 
thermostat setting), and comparing the measured supply 
and return temperatures at the boiler to the equipment spec-
ifications, were derived. Additionally, the pairwise correla-
tion coefficient in a sliding window and pairwise difference 
between the temperatures in the system were calculated, 
e.g., between the boiler supply and return temperatures and 
between the temperatures in different rooms.

Dynamic rules were also derived, as follows. The esti-
mated value of the ​k​th sample, ​​y ̂ ​(k)​, can be calculated, 
using the previously measured values, by system identifica-
tion and state estimation, in a similar manner to that 
described in Section IV-B. The estimation residue ​​
r​est​​ (k)  =  y(k) − ​y ̂ ​(k)​, where ​y(k)​ is the ​k​th measured sam-
ple, is expected to be small, assuming that the model used 
for estimation is a valid one, and the behavior of the system 
is “normal.” However, if the estimation error becomes 
large, this indicates that the behavior of the system does 
not match that of the model, which may mean that an 
attack is taking place. Some estimation error is expected, 
as the system model, typically, has a lower order than the 
system itself, due to complexities in the system and its 
dynamics. Upper and lower thresholds are derived from 
the statistical distribution of the estimation residue for his-
torical data. In this work, a dynamic rule was derived to 
estimate the current value of each variable, given the 
previous values, based on a system identification process.

Fig. 4. Schematic of the SIA tool showing both KB and DD 
algorithms and the interaction between them.
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It should be considered that a knowledgeable attacker, 
such as a malicious insider or an attacker who has observed 
the system over a very long period, could, conceivably, 
exploit the difference in granularity of the model, com-
pared to the system itself, to carry out an undetected 
attack. The combination of KB and DD detection methods 
aims to address this concern. Protected measurements 
could be taken into account in the KB and DD detectors, by 
weighting more heavily the values measured by the pro-
tected variables. However, in order to maintain indepen-
dence between the attack detector and the resilient policy, 
in this work, the protected and unprotected variables are 
not treated differently by the SIA tool.

A set of “healthy” data, during which no attacks 
occurred, was used to calculate appropriate thresholds for 
each variable or rule; for example, the maximum value of 
the difference between the room temperatures and their 
setpoints, or the 99th percentile of the estimation residue. 
The detector, then, classifies a given sample as an anomaly 
if one calculated metric or more exceeds the corresponding 
threshold. Because each metric relies on a subset of all of 
the variables, this detector may give an indication of which 
metric(s) have been manipulated by an attacker, thus con-
tributing to the attack isolation task. Furthermore, the 
magnitude of the residue or the amount by which the 
threshold was exceeded can provide an indication of the 
severity of the disturbance.

It is worth noting that other, more robust approaches to 
KB anomaly detection do exist, such as using detailed spec-
ifications of the application being monitored and its execu-
tion, in order to compare the implementation with pre-
dicted behavior [38], or the use of a detailed vulnerability 
analysis, based on nonlinear constrained models for power 
grids, to identify conditions for constrained false data 
injection attacks [39]. However, in this work, which 
focuses on the temperature data in a HVAC system, whose 
behavior is influenced, not only, by system specifications 
but, also, by external factors, such as number of occupants 
in a room, degree to which windows are open, external 
weather conditions, and many others, a more general 
approach to applying domain knowledge is taken, as 
described above, to investigate the feasibility of such an 
approach, in cases where a systematic model of interdepen-
dencies between components is challenging to define.

2) Data-Driven Anomaly Detection: As mentioned previ-
ously, machine learning (ML) algorithms are employed to 
learn normal behavior from available data and, then, to 
compare measured samples to the learned models, to deter-
mine if those new samples are anomalous or not. Many ML 
problems involve the classification of measurements into 
predefined groups or classes. If a dataset exists, containing 
samples for which the class label is known, the problem is 
referred to as “supervised” learning; conversely, if no such 
labeled dataset exists, it is an “unsupervised” learning 
problem. In most anomaly detection problems, where the 

vast majority of available data belongs to the “normal” class 
or null hypothesis, with few examples of data from the 
“anomalous” class or alternative hypothesis, supervised 
learning approaches are unsuitable. Furthermore, it is 
important that anomaly detection systems can successfully 
detect previously unseen anomalies, for which no labeled 
data exists.

For cases where training data are available but they rep-
resent only a single class or, more generally, where the vast 
majority of samples can be assumed to be from a single 
class, with a very small number of samples from other 
(anomalous) classes, single-class machine learning algo-
rithms exist. Most of these are adaptations of multiclass 
classifiers. In this work, a single-class support vector 
machine (1-SVM) is used, which is an adaptation of the 
popular support vector machine (SVM) [40]. A detailed 
description of the 1-SVM can be found in [41].

The 1-SVM learns its model from a vector of features 
derived from the measured data. The features may be the 
raw measured values, functions combining multiple values, 
statistics derived from the values, or other metrics. In this 
work, the features, which are used as inputs to the 1-SVM, 
include 1) the raw variable values; 2) the residues and dif-
ferences calculated in the KB detector; and 3) time-domain 
statistics, such as mean and standard deviation, calculated 
in a moving window. Results for the different types of fea-
tures will be shown in Section V.

The healthy data were, once again, used to train the 
1-SVM to recognize what the data looks like during normal 
operation. New samples are, then, classified as normal or 
anomalous, depending on how closely they fit with the 
learned model.

The 1-SVM treats the features jointly and provides a 
binary classification (i.e., anomalous or normal); as such, it 
does not provide any indication regarding which specific 
variable(s) caused the anomaly, or regarding the severity of 
the disturbance. However, it is an effective method for lim-
iting the impact of stealthy attacks.

B. Resilient Control

Once the attack has been detected and, ideally, iso-
lated, the resilience policy guarantees that the ICS will 
meet the following criteria.

I.  Abbreviation	 Expansion
​​C​1​​​	� Undetectable attack blocking: no unde-

tectable attack can be injected to the 
measurement signals;

​​C​2​​​	� Performance optimality: performance is 
optimal, in terms of minimum variance 
error of state estimation,under the 
abnormal state (i.e., the state in which 
attacks have taken place);

​​C​3​​​	� Stabilit y: the system remains stable 
under abnormal states.
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This section describes how the proposed resilience policy 
fulfills each of these criteria.

From [42], we learn that if the closed-loop transfer 
function from ​Δ​y​i​​​ to ​​y​i​​​, which is seen by the attacker, is 
nonzero, then the attacker can destabilize the system by 
injecting a ​Δ​y​i​​​ that violates the small-gain theorem’s nec-
essary and sufficient conditions. Thus, to ensure the sta-
bility of the closed-loop system, the resilience policy must 
eliminate the influence of the corrupted measurement 
from the control loop. This is achieved by means of correc-
tion vector signal ​r​, designed in such a way that the trans-
fer function from ​Δ​y​i​​​ to ​​y​i​​​ becomes zero. The correction 
vector signal ​r​ is generated in the supervisory controller 
and sent to the local controllers to correct the attacked 
signals ​​y​j​​​ for ​∀ j  ∈ ​ Γ​​ a​​. This results in a controller 
reconfiguration.

To generate ​r​, a virtual sensor is implemented in the 
supervisory controller, using a Kalman filter. Since the vir-
tual sensor is running in the supervisory level, it has access 
to system-wide measurements (​​y​1​​, …, ​y​N​​​) and can estimate 
the states of the plant (​​​x ̂ ​​i​​, i  =  1, …, ​n​x​​​), based on the avail-
able model of the system and all the available healthy mea-
surements, at all instants. From ​​x ̂ ​​, ​​y ̂ ​​ can be estimated, as 
shown in Fig. 5. The correction vector signal ​r​ is, then, cal-
culated and sent to the plant by the supervisory controller. 
It is important to note that, since the virtual sensor and 

controller reconfiguration takes place in the supervisory 
layer, the resilience policy can be easily implemented in 
existing ICS, without the need for major redesign of the 
local controllers in the plant.

Since the attacker has access to a number ​m​ of unpro-
tected measurements ​​y​i​​​, ​∀ i  ∈  Γ​, we can consider ​​2​​ m​​ dif-
ferent attack scenarios. This means there are ​​2​​ m​​ different 
modes, ​σ  ∈  { 1, …, ​2​​ m​ }​, for the system operation, where 
each mode indicates the combination of measurements 
that are under attack. Note that, over time, ​σ​ can switch. 
In the proposed framework, ​σ​ is continuously generated 
by the attack isolation modulation. This means that, as the 
attacker varies the attack policy, the attack isolation module 
informs the control reconfiguration module of the current 
attack mode, allowing the system to react and maintain 
optimal performance. Thus, considering different modes 
of operation, the measurement attack vector and the cor-
rection vector signals are represented by ​Δ​y​σ​​ (k)​ and ​​r​σ​​ (k)​, 
respectively, at any given time ​k​.

Here, the system mode is ​σ  =  1​ if the system is under 
normal state (i.e., ​Δ​y​σ​​  =  0​ if ​σ  =  1​) and we have ​
σ  ∈  { 2, …, ​2​​ m​}​ for all the possible abnormal states (i.e., 
​Δ​y​σ​​  ≠  0​ if ​σ  ≠  1​). ​σ  = ​ 2​​ m​​ denotes the mode in which 
all unprotected measurements are attacked. Considering 
the different modes of operation and the previously intro-
duced ​Δ​y​σ​​​ and ​​r​σ​​​, the discrete-time LTI system model (1) 
becomes a switched linear system (see [43])

​x(k + 1) = ​A​​ cl​ x(k) + ​B​ 1​ 
cl​d(k) + ​B​ 2​ cl​​(Δ​y​σ​​(k) + ​r​σ​​(k))​ + M​[​

w(k)
​ 

ν(k)
 ​]​

      y(k)  = ​ C​​ cl​ x(k)  + L​[​
w(k)

​ 
ν(k)

 ​]​​.​� (4)

The switched linear model (4) is called the abnormal 
system model. Recall that ​σ(k)​ can vary over time and the 
goal of ​​r​σ​​ (k)​ is to replace the attacked measurement ​​y ̃ ​​, with ​​
y ̂ ​​. Here, for simplicity of notation, we have used the sub-
script ​σ​ instead of ​σ(k)​, which is dependent on the given 
time ​k​.

Under the normal and abnormal states and for different 
attack scenarios, the virtual sensor generates an estimate 
of the outputs (​​​y ̂ ​​i​​ (k)  = ​ C​ i​ 

cl​ ​x​i​​ (k), i  ∈  Φ​), based on the lin-
ear state–space model of the plant (​​C​​ cl​​) and the received 
measurement signals ​​x​i​​ (k)​. The virtual sensor estimates 
the output​​​y ̂ ​​i​​, i  ∈  1, …, ​n​y​​​, based on all the available 
healthy measurements (see [2]). As such, the corrupted 
measurements are not used by the virtual sensor. At each 
time ​k​, the virtual sensor is informed, by means of ​σ​, that 
the measurements ​​y​j​​, j  ∈ ​ Γ​​ a​​ are corrupted and should not 
be used for updating and predicting the state estimate ​​x ̂ ​(k)​. 
To account for the fact that there can be communication 
delays between the plant and the supervisory controller, we 
make the following assumption.1

Fig. 5. Schematic of control system, which is resilient against the 
adversarial actions on the measurements.

1The assumption can be relaxed at the expense of a slightly more 
complicated estimator.
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Assumption 2: At the given time ​k​, only the measure-
ments until time ​k − 1​ are available in the supervisory 
controller.

Based on Assumption 2, the virtual sensor, which, here, 
is a switched Kalman filter (see [43]), takes the prediction 
step for the state of the system as

​​x ̂ ​(k + 1 | k)  = ​ A​​ cl​​x ̂ ​(k | k − 1)  + ​K​σ​​ (k) ​​[​y​σ​​ (k)  − ​C​σ​​​x ̂ ​(k | k − 1)]​ 
 
 


 

ε(k)

 ​​

� (5)

where ​​y​σ​​(k)​ is a vector of healthy measurements. Here, ​​
C​σ​​​ is constructed from the matrix ​​C​​ cl​​ by removing the rows 
related to the corrupted measurements and based on the 
operation mode ​σ​. Note that by ​​x ̂ ​(k | k − 1)​ we mean an esti-
mation of ​x(k)​, given the measurements ​​y​σ​​(t)​ up until time ​
t  =  k − 1​. The optimal one step ahead prediction of ​y(k)​ is ​​
y ̂ ​(k)  = ​ C​​ cl​​x ̂ ​(k | k − 1)​. The time-varying Kalman gain ​​K​σ​​(k)​ 
is given by

​​K​σ​​(k)  = ​ (​A​​ cl​ ​P​σ​​(k) ​C​ σ​ ⊤​ + ​R​12σ​​)​ × ​( ​C​σ​​ ​P​σ​​(k) ​C​ σ​ ⊤​ + ​R​2σ​​)​​ 
−1

​

​P​σ​​(k)  = ​ A​​ cl​ ​P​σ​​(k​−​1) ​​A​​ cl​​​ 
⊤

​​+​​R​1σ​​​−​​(​​A​​ cl​ ​P​σ​​(k​−​1) ​C​ σ​ ⊤​+​​R​12σ​​​)​

	 × ​​(​C​σ​​ ​P​σ​​(k − 1) ​C​ σ​ ⊤​ + ​R​2σ​​)​​​ 
−1

​

	 × ​​(​A​​ cl​ ​P​σ​​(k − 1) ​C​ σ​ ⊤​ + ​R​12σ​​)​​​ 
⊤

​​� (6)

where ​​P​σ​​(k)​ is the time-varying estimation error covariance 
matrix. In (6), we have ​​R​1σ​​  =  MR ​M​​ ⊤​​, ​​R​2σ​​  = ​ L​σ​​ R ​L​ σ​ ⊤​​, 
and ​​R​12σ​​  =  MR ​L​ σ​ ⊤​​. Here, ​​L​σ​​  = ​ I​σ​​ ​ρ​ σ​​ L​, in which ​​I​σ​​​ is con-
structed from identity matrix having zero on the ​i​th diag-
onal entry, and ​​ρ​ σ​​​ is constructed from identity matrix by 
removing the ​i​th row, ​∀ i  ∈ ​ Γ​​ a​​, based on the operation 
mode ​σ​.

In the following assumption, the system is under the 
worst case attack mode, ​σ  = ​ 2​​ m​​, in which all of the ​m​ 
unprotected sensor measurements (​​y​j​​,  ∀ j  ∈  Γ​) are under 
attack and the virtual sensor only uses the protected mea-
surements’ noise for estimation.

Assumption 3: The states of the system (4) are all sta-
bilizable from the protected measurements’ noise. This 
means that the pair (​​A​​ cl​ − ​R​12σ​​ ​R​ 2σ​ −1​ ​C​σ​​, ​R​1σ​​ − ​R​12σ​​ ​R​ 2σ​ −1​ ​R​ 12σ​ ⊤ ​​ ) 
is stabilizable for ​σ  = ​ 2​​ m​​.

Given Assumption 3, the system is stabilizable for all 
other modes ​σ​. If Assumption 3 is omitted, there may be 
several positive–semidefinite solutions for (6) in the 
steady state.

Given ​​x ̂ ​(k | k − 1)​, the correction signal is, then, given by

	​​ r​σ​​(k)  = ​ Q​σ​​(k)​(​y ̃ ​(k)  − ​C​​ cl​​x ̂ ​(k + 1 | k))​​.​� (7)

Here, the matrix ​​Q​σ​​(k)​ is a diagonal matrix, having −1 
on diagonal entries related to the measurements under 
attack, and 0 on the rest. In this way, the resilience policy 
omits the attacked measurements, and uses the estimated 
outputs instead.

Based on the estimated states, the supervisory control-
ler will send the correction signal ​​r​σ​​​, to the plant for con-
trol reconfiguration and to improve the performance of the 
system under attack. The local controller receives the 
signal ​y + Δ​y​σ​​ + ​r​σ​​​ instead of ​y + Δ​y​σ​​​. The signal 
​y + Δ​y​σ​​ + ​r​σ​​​ would not be of the same quality, and may be 
time delayed compared to measurements of the system ​y​ 
under normal state. However, in this way, we make sure 
that the attacker cannot destabilize the system. The other 
advantage of this approach is that it does not require many 
changes in the lower level implementation of the local con-
trollers. Next, it will be proven that the proposed scheme 
preserves stability and performance optimality.

Definition 2: (Completely Switched Observability 
[43]): The deterministic part of (4) is completely switched 
observable over the finite time horizon [​​k​0​​, ​k​1​​​] if and only if 
the observability matrix 

	​ D( ​k​1​​, ​k​0​​) :   = ​

⎡

 ⎢ 

⎣

​ 

​C​σ​​( ​k​0​​)

​ 
​C​σ​​( ​k​0​​ + 1) ​A​​ cl​

​ ⋮​ 

​ C​σ​​( ​k​1​​)(​A​​ cl​)​​​ 
​k​1​​−​k​0​​

​

​

⎤

 ⎥ 

⎦

​​� (8)

has full rank ​rank​{D( ​k​1​​, ​k​0​​)}​  = ​ n​x​​​, for each possible 
switching sequence ​σ( ​k​0​​), …, σ( ​k​1​​)​.

However, the switched observability of the system (4) is 
not ensured by the assumption that for each subsystem ​
σ  ∈  { 1, …, ​2​​ m​}​, the pair (​​A​​ cl​, ​C​σ​​​) is observable. Therefore, 
the following assumption is made.

Assumption 4: There exists redundancy in the sensor 
measurements’ information, and the system is observable 
from the protected measurements alone ​​y​i​​, i  ∈ ​ Γ​​ C​​.

To fulfill the criterion ​​C​1​​​, the following assumption on 
measurements’ protection must also be made.

Assumption 5: The protected measurements block 
undetectable attacks.

The set of protected measurements should, therefore, 
be selected to fulfill the above assumptions, in order for the 
resilience policy to achieve criterion ​​C​1​​​.

Lemma 1: Consider the switched system (4) with the 
finite number of switching modes ​σ  ∈  { 1, …, ​2​​ m​}​. This sys-
tem is completely switched observable over the finite time 
horizon [​​k​0​​, ​k​1​​​], ​∀ ​k​1​​  ≥ ​ k​0​​ + ​n​x​​ − 1​ under Assumption 4.

Proof: Based on Assumption 4, at most ​m​ measurements 
could be corrupted, and there exist ​​2​​ m​​ different modes ​
σ  ∈  { 1, …, ​2​​ m​}​, for the switched system. Recall that ​​C​​2​​ m​​​​ 
relates to the worst case mode in which all ​m​ unprotected 
measurements are corrupted. It is known that ​​C​​2​​ m​​​​ is a 
subset of ​​C​σ​​,  ∀ σ  ∈  { 1, …, ​2​​ m​}​. In addition, based on 
Assumption 4, it is known that (​​A​​ cl​, ​C​​2​​ m​​​​) is observable 
(​Obsv(​A​​ cl​, ​C​​2​​ m​​​)  = ​ n​x​​​). Thus, ​rank​{Obsv( ​A​​ cl​, ​C​​2​​ m​​​)}​  ≤  
rank​{D( ​k​1​​, ​k​0​​)}​,  ∀ ​k​1​​  ≥ ​ k​0​​ + ​n​x​​ − 1​, which means that ​
rank​{D( ​k​1​​, ​k​0​​)}​  = ​ n​x​​​.
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Lemma 2: If, for each possible switching sequence 
​σ(​k​0​​), …, σ(​k​1​​)​, over the finite time horizon [​​k​0​​, ​k​1​​​], the 
pair (​​A​​ cl​, ​C​ σ​ cl​​) is completely switched observable and the 
pair (​​A​​ cl​, M​) is controllable, by defining ​​P​σ​​(k)  =  E( ​e​​ x​(k) ​e​​ x​
(k)​​ ⊤​)​, for an arbitrary switching sequence ​σ(0), …, 
σ(k),  ∀ k​, the error variance ​tr( ​P​σ​​(k))​ of the switching state 
estimation is bounded.

Note that ​​e​​ x​(k)  =  x(k) − ​x ̂ ​(k)​ is the estimation error. 
Proof: For proof, see [43], Lemma 2 for instance.

Theorem 1: The application of the switching Kalman 
filter (5) yields an unbiased linear estimate ​​x ̂ ​(k)​ of the sys-
tem state ​x(k)​, with minimum error variances ​∀ k  ≥ ​
n​x​​ − 1​, for an arbitrary switching sequence ​σ(0), …, σ(k)​.

Proof: Based on Lemma 1, the switched linear system in 
(4) is completely switched observable over the finite time 
horizon [​0, k​], ​∀ k  ≥ ​ n​x​​ − 1​. By having completely 
switched observability, as is shown in the proof of 
Lemma 3 in [43], the switching Kalman filter (5) leads to 
the minimum error variance ​∀ k  ≥ ​ n​x​​ − 1​.

Based on Theorem 1, the criterion ​​C​2​​​ has been ful-
filled here.

Considering, under all conditions, only the protected 
measurement for the estimation gives an upper bound, 
​tr​(​P​σ​​(k))​, σ  = ​ 2​​ m​,  ∀ k​, on the optimal performance of the 
system, in the sense of variance of the estimation error 
​​e​​ x​(k)​. Thus, by considering all the healthy measurements, 
which gives us more information for the estimation, the 
application of the switching Kalman filter (5) yields an 
unbiased linear estimate ​​x ̂ ​(k)​ of the system state ​x(k)​ with 
minimum error variance ​tr​(​P​σ​​(k))​, σ  ∈  { 1, …, ​2​​ m​},  ∀ k​.

By designing the switched observer (5) for the stochas-
tic switched linear system (4), for different modes of opera-
tion ​​σ​ k​​  ∈  { 1, …, ​2​​ m​},  ∀ k​, the closed-loop dynamics of the 
system are given by

​​[​ 
x(k + 1)

​ 
​e​​ x​(k + 1)

​]​  = ​​ [​
​A​​ cl​

​ 
  ​ B​ 2​ cl​ ​Q​σ​​ ​C​​ cl​

​  
0

​ 
  ​ A​​ cl​ + ​B​ 2​ cl​ ​Q​σ​​ ​C​​ cl​−​​K​σ​​(k) ​C​σ​​

​]​  

 

  



  

​A​ σ​ sp​

 ​​​ [​ 
x(k)

​ 
​e​​ x​(k)

​]​

+​[​
​B​ 1​ 

cl​
​ 

​B​ 1​ 
cl​

​]​d(k)  + ​B​ 2​ cl​​[​I + ​Q​σ​​​ 
0

 ​ ]​Δ​y​σ​​(k)

	 +​[​ 
M + ​B​ 2​ cl​ ​Q​σ​​ ​L​σ​​

​  
M + ​B​ 2​ cl​ ​Q​σ​​ ​L​σ​​ − ​K​σ​​(k) ​L​σ​​

​]​​[​
w(k)

​ 
ν(k)

 ​]​​.​� (9)

Theorem 2: For arbitrary switching sequence modes, ​
σ  ∈  { 1, …, ​2​​ m​},  ∀ k​, the closed-loop system (9) is asymptot-
ically stable.

Proof: Here, since ​​(I + ​Q​σ​​)​​ is a diagonal matrix with 
diagonal zero entries for the corresponding nonzero entries 
of ​Δ​y​σ​​(k)​, then we have ​​(I + ​Q​σ​​)​Δ​y​σ​​(k)  =  0​. In addition, ​​
e​​ x​(k)​ is the input for the state ​x(k)​, and the matrix ​​A​ ​σ​ 1​​​ 

sp​ × ​
A​ ​σ​ 2​​​ 

sp ​ × ⋅ ⋅ ⋅ × ​A​ ​σ​ l​​​ 
sp​,  ∀ l​, is an upper block triangular matrix. In 

[43], proof of Lemma 4, it is shown that the deterministic 

part of the error ​​e​​ x​(k)​ is asymptotically stable, in the sense 
of Lyapunov, and vanishes for ​k  →  ∞​, which means ​​A​​ cl​ + ​
B​ 2​ cl​ ​Q​σ​​ ​C​​ cl​ − ​K​σ​​(k) ​C​σ​​​ is a stable matrix. Thus, the matrix ​​
A​ ​σ​ 1​​​ 

sp​ × ​A​ ​σ​ 2​​​ 
sp ​ × ⋅ ⋅ ⋅ × ​A​ ​σ​ l​​​ 

sp​,  ∀ l​, has bounded off-diagonal block, 
since the matrix ​​A​​ cl​​ is Schur stable by Assumption 1 and ​​
A​​ cl​ + ​B​ 2​ cl​ ​Q​σ​​ ​C​​ cl​ − ​K​σ​​(k) ​C​σ​​​ is stable. Therefore, the closed-
loop system is asymptotically stable, since the effect of ​​
e​​ x​(k)​ on ​x(k)​ vanishes, the effect of ​Δ​y​σ​​(k)​ on ​x(k)​ is zero, 
and ​​A​​ cl​​ is Schur stable.

Based on Theorem 2, the criterion ​​C​3​​​ has been ful-
filled here.

V.  SIMU L ATION R ESU LTS

A. Simulation Environment

Because attacks cannot be carried out on operational 
infrastructure, like the Nimbus smart grid, without caus-
ing, at worst, danger and, at best, inconvenience to users of 
the buildings, a simulation of the environment was built, in 
order to measure the performance of the proposed security 
system. The simulated environment is a reduced-order 
model of the system, which does not intend to capture all 
variables and operating conditions, but to provide a repre-
sentation of a subset of the components, capturing their 
inter-relationships and dynamics.

To arrive at a linear state–space model of the controlled 
HVAC system, a subspace identification followed by a pre-
diction error method was applied. In this identifica-
tion, the external temperature (which is the disturbance to 
the system) is considered as the input (​u​), and the outputs 
are the header flow temperature (​​y​1​​​), the return tempera-
ture (​​y​2​​​), as well as ground and first floor room tempera-
tures in  the Nimbus building (​​y​3​​​ and ​​y​4​​​, respectively) 
and the Rubicon building (​​y​5​​​ and ​​y​6​​​, respectively). Each of 
these quantities is illustrated in Fig. 3. Simulated samples 
were  generated at a rate of one sample per minute, to 
match the Nimbus BMS sampling rate.

The simulated environment was validated by replicat-
ing the external temperature variation measured by the 
Nimbus BMS during a 24-h period and using these values 
as the simulation input signal ​u​. Fig. 6 shows the output 
variables ​​y​1​​​ to ​​y​6​​​, for both simulated and real data. Because 
the simulated environment is a simplified model of the 
entire BMS system, the dynamics are not expected to 
match perfectly in the two data sets. Furthermore, the ini-
tial conditions of the real system were not exactly repli-
cated in the simulated data set. However, the similarity 
between the systems, overall, allows the performance of 
the proposed security measures on the simulated environ-
ment to be considered indicative of what the performance 
would be on a real operational system.

Attacks were simulated by modifying the value of one or 
more measured variables ​​y​1​​​ to ​​y​6​​​. The disturbances to the 
variables under attack were generated by a random walk 
process, in order to explore the performance of the system 
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in the face of varying levels of attack. Attacked data were 
simulated for three individual days, with the input signal​ u​, 
following external temperature variations measured from 
the real system for randomly selected days in February 
2016. Using the measured external temperature data, as 
the input, ensures that the operating conditions for simula-
tion are realistic. Each of the three attacked datasets has a 
duration of 24 h, with four separate attacks occurring, each 
with a duration of 2 h; the system was allowed to return 
to normal operating conditions in between attacks to avoid 
making attack detection easier due to the cumulative effect 
of multiple attacks.

In order to train the detectors, so-called “healthy” 
data, with no attacks was simulated for nine days, using 
measured external temperature data from February 2016. 

It should be noted that the external temperature data for 
this healthy dataset were not the same as those for the 
attacked data, to ensure that attack detection was not sim-
ply the result of overfitting the model to the healthy train-
ing data. The training data set, referred to in Section 
IV-A, contained seven of the nine days of healthy data. 
One of the attacked data sets and data from one of the 
remaining two healthy days was used for tuning of the 
model parameters for the 1-SVM. Finally, the remaining 
two attacked data sets (which contain both healthy and 
attacked data), along with the final day of healthy data, 
were used to evaluate the performance of the detectors. 
For each attacked data set, a corresponding healthy data 
set was, also, generated, in order to quantify the effect of 
the attacks.

B. Attack Detection

Figs. 7 and 8 show binary indicators of the attack and 
detection status for the KB detector, based on static rules, 
and the DD detector, based on the raw measured variables 
as 1-SVM features. For the test data sets using external 
temperature data from February 9, 2016 and February 11, 
2016, attacks occur, each lasting 2 h. During each attack, 
one variable (from ​​y​1​​ , ⋯, ​y​6​​​) was manipulated with a distur-
bance, whose magnitude was generated by a random walk 
process. For the test data set using external temperature 
data from February 12, 2016, no attack was present; this 
data set was used to quantify the false alarm rate. The per-
formance of the KB detectors relies heavily on the choice of 
appropriate rules and thresholds, as will be discussed in 
more detail later. For the 1-SVM detector, the target false 
alarm rate can be varied by tuning the model parameters. 
For the detectors, whose results are shown in the figures, 
the expected time between false alarms was found to be 
75.8 and 72.0 min, for the KB detector and DD detector, 
respectively; thus, they are considered to have a compara-
ble performance. The figures show that all attacks were 
eventually detected by both KB and DD detectors.

Fig. 6. Simulated data for ªhealthyº system (red) and measured 
data from Nimbus BMS (blue), with the same external temperature 
signal.

Fig. 7. Attack and detection status (1 = TRUE, 0 = FALSE) versus time of day for KB detector.
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For the DD detector, there appear to be more false 
alarms in between attacks, than for the KB detector. 
However, when it is considered that, between attacks in the 
simulated data set, the systems is recovering from the previ-
ous attack, it should not be assumed to be operating under 
“normal” conditions. Thus, these apparent false alarms are 
to be expected. Similarly, the so-called “false alarms” that 
occur between 00:00 and 04:00 on February 9, 2016 for the 
DD detector were found to be caused by the settling time of 
the simulation model; during this time, the operation of the 
simulated system was not in accordance with normal steady 
state operation. As such, although this period does not 
strictly represent a simulated attack, it is a positive result 
that the DD detector identified such behavior as abnormal.

For the KB detector, there were a greater number of 
attacked samples for which detection was missed, a deeper 
analysis of which shows that the extent to which data were 
manipulated for these samples was small, relative to the 
nominal operating conditions (i.e., injected temperature 
deviation of the order of 1 °C, relative to nominal tempera-
tures around 60 °C). This highlights the limitations of the 
KB detector implemented here as a standalone method for 
detecting stealthy attacks and the sensitivity of such detec-
tors to the specification of the underlying models. More 
robust methods for specifying the KB detectors rules, such 
as those reported in [38] and [39], would likely result in an 
improved performance.

The detection delay (i.e., the time between the instant 
when the attack began and the instant when it was first 
detected) varies for each attack. On average, the DD 
detector had a shorter detection delay than the KB detec-
tor, as shown in Table 1, which shows the amount of time, 
in minutes, between the onset of the attack and the first 
sample classified as an anomaly, for each attack in the test 
data sets.

In the case of the attack at 12:00 on February 11, 2016, 
even the DD detector did not detect the attack until the sev-
enth sample of manipulated data. Analysing this case in 
more depth, to understand why the delay was greater than 
that for other attacks, it was seen that the degree of 

manipulation of the data in that case was minimal, during 
the initial period of the attack, with less than 0.3 °C of tem-
perature disturbance, compared to a nominal value of 56 °C. 
As such, it is clear that the detection delay is dependent on 
the magnitude of the disturbance, which varied throughout 
the attacks. Urbina et al. [7] proposed a method of evaluating 
attack detectors, using the expected time between false 
alarms ​E[​T​fa​​]​, and the maximum deviation that the attacker 
can achieve in the attacked variable, while remaining 
stealthy. Here, we adopt Urbina et al.’s method for comparing 
the performance of detectors, because detection delay, alone, 
does not represent the impact of the data manipulation on 
the system under attack.

Because multiple different variables may be attacked in 
a smart grid or EMS, the maximum deviation could be 
defined in many different ways. For illustrative purposes, 
we use the maximum value of the sum of the absolute devi-
ation of the header supply and return temperatures as the 
metric of interest for measuring the severity of the attack 
that can go undetected. These temperatures are considered 
to be relevant because loss of control over them could lead 
to overheating in the boiler and pose a safety risk for users 
of the building. However, the temperatures at other points 
throughout the system, such as room temperatures, could 
also be used as alternative metrics of interest. The maxi-
mum deviation reported in the following results is the 
maximum deviation that was undetected in the simulated 
attacks; it is not a theoretical maximum value.

Fig. 8. Attack and detection status versus time of day for DD detector.

Table 1  Simulated Attack Detection Delay for KB and DD Detectors
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Fig. 9 shows the tradeoff between the false alarm rate 
and the disturbance to the system that can be achieved by 
an attacker when the KB and DD (1-SVM) detectors are 
implemented. Various DD detectors, each using a different 
set of features at the input, are illustrated. In the experi-
ments, the 1-SVM detectors can be seen to outperform the 
KB detector, resulting in a smaller maximum undetected 
deviation for the same false alarm rate. Three 1-SVM 
detectors are shown in the figure, each with a different set 
of features at the input: SVM-vars uses the raw variables 
measured by the sensors as features; SVM-res uses the res-
idues calculated from the KB rules as features; SVM-all 
uses the raw variables, the KB rule residues and time-
domain statistics as features. The performance of SVM-res 
and that of SVM-all are seen to be marginally better than 
that of SVM-vars, suggesting that combining both expert 
knowledge and machine learning can be beneficial for 
attack performance.

C. Resilient Control

The performance of the proposed resilient control for 
the BMS is evaluated in this section. In the simulation 
results shown in Fig. 10, the measurements ​​y​1​​ , ​y​2​​, …, ​y​6​​​, as 
defined previously, are under consideration. In this system, 
we find that it is enough to protect any one of these mea-
surements to prevent 0−stealthy attacks, and the measure-
ment ​​y​6​​​ has been chosen to be protected. Results are 
shown for three different cases:

• � healthy BMS: where no attack is carried out on the 
system;

• � attacked BMS: where the attacker corrupts some of 
the measurements, but no resilience policy is in the 
place to recover the system from abnormal state;

• � attack-resilient BMS: where the attacker corrupts 
some of the measurements, and the resilience policy 

recovers the system and returns it to normal operat-
ing conditions after the attack detection.

Here, for both the attacked BMS and attack-resilient 
BMS data sets, a combined attacks scenario, with attacks 
on ​​y​1​​​ and ​​y​2​​​, simultaneously, is considered to start at 
instant, ​​k ′ ​ =​ 3000 s. For all samples with time greater than ​​
k ′ ​​, the measurements of the header supply and header 
return temperatures ​​y​1​​​ and ​​y​2​​​, respectively, are manipu-
lated, by adding 15 °C to each of them, and are fed to the 
respective controllers. This attack on ​​y​1​​​ and ​​y​2​​​ leads to high 
safety risk due to potential damage to CHP in the attacked 
BMS, as the return temperature becomes too low (below 
65 °C) after the attack. In the attack-resilient BMS data set, 
the attack is considered to be detected by the SIA, and the 
resilient policy is triggered, such that the corrupted mea-
surements are replaced with their estimates.

Some major factors, such as communication delays, the 
large volume of data to be processed, and time-consuming 
security analysis algorithms, can affect real-time attack 
detection. To investigate the performance of the proposed 
resilient control situations where a detection delay occurs, 
the following scenario is considered: the attack starts at time ​
k =​ 3000 s, and is detected at ​k =​ 4440 s (i.e., with a 24-min 
detection delay, which is the maximum detection delay in 
Table 1). As is shown in Fig. 10, the attack-resilient BMS has 
the same outputs as the attacked BMS, until attack detec-
tion (​k =​ 4440 s), but it can successfully recover the system 

Fig. 9. Maximum (experimental) temperature deviation versus 
​E[ ​T​fa​​]​ for KB and SVM detectors.

Fig. 10. Performance comparison of the healthy BMS, attacked BMS, 
and attack-resilient BMS, in the presence of delay in attack detection 
(the attack starts at time 3000 s and is detected at 4440 s).
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and return it to normal operating conditions after detection. 
Other simulations, with different detection delays, have 
been carried out and, in all the cases, the attack-resilient 
BMS has successfully recovered the system and returned it 
to normal operating conditions after attack detection. The 
figure shows that, in this attack scenario, the attack-resil-
ient BMS is robust against the multimeasurement attack 
and has a stable performance, similar to that of the healthy 
BMS, after attack detection.

V I.   CONCLUSION

In this work, a framework for ICS security has been pro-
posed, incorporating both data analytics for attack detec-
tion and a resilient control policy, based on the adapta-
tion of virtual sensors. It is clear that implementing the 
framework in existing ICS does not require any major 
modification to the local controllers because the frame-
work is implemented in the supervisory layer. It was shown 
that data-driven anomaly detection provides a promising 
detection improvement over the knowledge-based detec-
tors employed in this study, with respect to the tradeoff 
between the expected time to false alarm and the maximum 
undetected deviation achieved by an attack. Future work 
to investigate other methods of defining the KB detector 
rules will be carried out, using complex system modeling 
approaches, and similar. When it is considered that data-
driven methods are also more flexible and adaptable, in the 
case of changes to system configuration, for example, due 
to addition, removal or replacement of equipment, it sug-
gests that such methods should be adopted for securing ICS 
against cyber attacks. Further work with larger and more 
diverse data sets and a wide range of simulated attack sce-
narios will be carried out to gain a deeper understanding 
of the combinations of anomaly detection algorithms and 
feature sets, including knowledge-based system models as 

features, that achieve the best performance. Simulation 
results also showed that the proposed controller recon-
figuration approach can recover the system from abnormal 
states, even when a detection delay exists. The proposed 
resilience policy has, thus, been shown to be effective to 
ensure that stability and performance of the system are 
maintained, even under attack conditions.

Considering the performance of the SIA, from the 
point of view of the maximum deviation achieved by an 
attacker versus the expected false alarm rate, allows the 
relationship between the attack detector and the resil-
ience policy to be understood clearly: using the protected 
measurements only for state estimation degrades the 
quality of the system, relative to the estimate based on all 
measurements, in the case that no attack has occurred; 
thus, it is vital to minimize the frequency of false alarms. 
However, in the case where an attack has occurred, it is 
important that the delay before triggering the resilience 
policy be as short as possible, in order that the deviation 
from normal, stable operating conditions is minimized. 
The third element of the proposed framework is the 
attack isolation stage and this remains to be explored in 
future work, whereby the SIA and resilience policy will 
cooperate to isolate the variable(s) which have been cor-
rupted, allowing the virtual sensor to use as many 
healthy variables as possible for estimation. Another 
important aspect of this work, which remains to be 
explored in more detail in the future, is the question of 
determining, in a systematic way, which subset of mea-
surements should be protected, in order to prevent unde-
tectable attacks.� 
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